9 research outputs found

    A meso-scale ultrasonic milli-reactor enables gasā€“liquid-solid photocatalytic reactions in flow

    Get PDF
    The handling of solid reagents, catalysts and by-products is a daunting challenge in continuous-flow micro- and milli-reactors. Suspensions tend to settle over time leading to irrevocable clogging of the reaction channels. Herein, we describe our efforts to develop an ultrasonic milli-reactor which can handle such challenging solid-containing transformations. The reactor consists of a Langevin-type transducer, a sonotrode and an irradiating cylinder, on which a coiled glass capillary (12.88 mL) was attached. The ultrasonic milli-reactor was combined with an LED illuminating box and its efficacy was showcased in the photocatalytic aerobic oxidation of benzyl alcohol enabled by TiO2 particles exposed to UV-A irradiation. Ultrasound irradiation generates cavitation bubbles and causes a vigorous oscillation of both the cavitation and the Taylor bubbles. This improves the liquid mixing, the gasā€“liquid mass transfer and ensures resuspension of the settled particles. Moreover, these effects enhance the photon absorption by the semiconductor catalyst, which has an overall positive effect on the photocatalytic transformation

    Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry

    Get PDF
    [Image: see text] Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry

    Development of an Off-Grid Solar-Powered Autonomous Chemical Mini-Plant for Producing Fine Chemicals

    Get PDF
    Photochemistry using inexhaustible solar energy is an eco-friendly way to produce fine chemicals outside the typical laboratory or chemical plant environment. However, variations in solar irradiation conditions and the need for an external energy source to power electronic components limits the accessibility of this approach. In this work, a chemical solar-driven ā€œmini-plantā€ centred around a scaled-up luminescent solar concentrator photomicroreactor (LSC-PM) was built. To account for the variations in solar irradiance at ground level and passing clouds, a responsive control system was designed that rapidly adapts the flow rate of the reagents to the light received by the reaction channels. Supplying the plant with solar panels, integrated into the module by placing it behind the LSC to utilize the transmitted fraction of the solar irradiation, allowed this setup to be self-sufficient and fully operational off-grid. Such a system can shine in isolated environments and in a distributed manufacturing world, allowing to decentralize the production of fine chemicals

    Rapid and Replaceable Luminescent Coating for Silicon-Based Microreactors Enabling Energy-Efficient Solar Photochemistry

    No full text
    The sun is the most sustainable source of photons on the earth but is rarely used in photochemical transformations due its relatively low and variable intensity, broad wavelength range, and lack of focus. Luminescent solar concentrator-based photomicroreactors (LSC-PMs) can be an answer to all these issues, but widespread adoption is plagued by challenges associated with their complicated manufacturing. Herein, we developed a new strategy to accelerate and ease the production of LSC-PMs by depositing a thin luminescent film on commercially and widely available silicon-based microreactors. The protocol is fast and operationally simple, and the luminescent coating can be easily removed and replaced. This enables rapid tuning of the luminescent coating to fit the requirements of the photocatalytic system and to increase the photon flux inside the microreactor channels

    Rapid and Replaceable Luminescent Coating for Silicon-Based Microreactors Enabling Energy-Efficient Solar Photochemistry

    No full text
    The sun is the most sustainable source of photons on the earth but is rarely used in photochemical transformations due its relatively low and variable intensity, broad wavelength range, and lack of focus. Luminescent solar concentrator-based photomicroreactors (LSC-PMs) can be an answer to all these issues, but widespread adoption is plagued by challenges associated with their complicated manufacturing. Herein, we developed a new strategy to accelerate and ease the production of LSC-PMs by depositing a thin luminescent film on commercially and widely available silicon-based microreactors. The protocol is fast and operationally simple, and the luminescent coating can be easily removed and replaced. This enables rapid tuning of the luminescent coating to fit the requirements of the photocatalytic system and to increase the photon flux inside the microreactor channels

    Rapid and Replaceable Luminescent Coating for Silicon-Based Microreactors Enabling Energy-Efficient Solar Photochemistry

    Get PDF
    [Image: see text] The sun is the most sustainable source of photons on the earth but is rarely used in photochemical transformations due its relatively low and variable intensity, broad wavelength range, and lack of focus. Luminescent solar concentrator-based photomicroreactors (LSC-PMs) can be an answer to all these issues, but widespread adoption is plagued by challenges associated with their complicated manufacturing. Herein, we developed a new strategy to accelerate and ease the production of LSC-PMs by depositing a thin luminescent film on commercially and widely available silicon-based microreactors. The protocol is fast and operationally simple, and the luminescent coating can be easily removed and replaced. This enables rapid tuning of the luminescent coating to fit the requirements of the photocatalytic system and to increase the photon flux inside the microreactor channels

    The development of luminescent solar concentrator-based photomicroreactors: a cheap reactor enabling efficient solar-powered photochemistry

    Get PDF
    Sunlight strikes our planet every day with more energy than we consume in an entire year. Therefore, many researchers have explored ways to efficiently harvest and use sunlight energy for the activation of organic molecules. However, implementation of this energy source in the large-scale production of fine chemicals has been mostly neglected. The use of solar energy for chemical transformations suffers from potential drawbacks including scattering, reflections, cloud shading and poor matches between the solar emission and absorption characteristics of the photochemical reaction. In this account, we provide an overview of our efforts to overcome these issues through the development of Luminescent Solar Concentrator-based PhotoMicroreactors (LSC-PM). Such reactors can efficiently convert solar energy with a broad spectral distribution to concentrated and wavelength-shifted irradiation which matches the absorption maximum of the photocatalyst. Hence, the use of these conceptually new photomicroreactors provides an increased solar light harvesting capacity, enabling efficient solar-powered photochemistry

    Scale-Up of a Heterogeneous Photocatalytic Degradation Using a Photochemical Rotorā€“Stator Spinning Disk Reactor

    Get PDF
    Many chemical reactions contain heterogeneous reagents, products, byproducts, or catalysts, making their transposition from batch to continuous-flow processing challenging. Herein, we report the use of a photochemical rotorā€“stator spinning disk reactor (pRS-SDR) that can handle and scale solid-containing photochemical reaction conditions in flow. Its ability to handle slurries was showcased for the TiO2-mediated aerobic photodegradation of aqueous methylene blue. The use of a fast rotating disk imposes high shear forces on the multiphase reaction mixture, ensuring its homogenization, increasing the mass transfer, and improving the irradiation profile of the reaction mixture. The pRS-SDR performance was also compared to other lab-scale reactors in terms of water treated per reactor volume and light power input
    corecore